Chlorine-35 Nuclear Quadrupole Resonance Studies of some Chlorinecontaining Phosphorus-Nitrogen Compounds

By William H. Dalgleish, Rodney Keat,* and Andrew L. Porte,* Department of Chemistry, University of Glasgow, Glasgow G12 800

Robert A. Shaw, Department of Chemistry, Birkbeck College (University of London), Malet Street, London WC1E 7HX

The 35 Cl n.q.r. spectra of a series of chlorine-containing phosphorus-nitrogen compounds including [CI(X)PNR]2 $(X = \text{lone pair, } R = Bu^t; X = O, R = Bu^t \text{ or } Me), PCl_2(NBu^tH)O, Cl_2P \cdot NBu^t \cdot PCl_2, Cl_2P \cdot NMe \cdot P(O)Cl_2, Cl_2(X) - Cl_2(NBu^tH)O, Cl_2P \cdot NBu^t \cdot PCl_2, Cl_2(X) - Cl_2$ $P \cdot NMe \cdot P(X) Cl_2 (X = O \text{ or } S), Cl_2(O) P \cdot NR \cdot P(S) Cl_2 (R = Me \text{ or } Ph), the heterocycle C_{17}H_{20}ClN_2OP (see Table 1),$ and Cl₂(O)P·N:PPh₃ have been recorded at ambient temperatures and/or 77 K. The results are discussed in terms of the structures, where known, and a linear correlation between P-CI bond lengths and n.g.r. frequencies has been deduced for phosphoryl compounds : this is different from the correlation previously deduced for cyclophosphazenes. Data for Cl₂(O)PCH₂P(O)Cl₂ are also included. The n.q.r. results enable some comparisons to be made of the relative electron supply of some common substituents encountered in phosphorus chemistry.

CHLORINE-35 n.q.r. spectroscopy has been widely applied in recent years to structural problems connected with phosphorus-chlorine compounds.¹ It has also been shown² that there is a linear correlation between P-Cl bond lengths and ³⁵Cl n.q.r. frequencies for chlorocyclophosphazenes. The applicability of this correlation for other types of phosphorus-chlorine compound has not been established because of a lack of accurate P-Cl bond-length data relevant to the solid state. In this study we describe the ³⁵Cl n.q.r. spectra of a series of cyclic and acyclic phosphorus-nitrogen compounds with oxidation states III and/or phosphorus in V particular emphasis being placed on the spectra of phosphoryl compounds. Information is obtained on the relation between ³⁵Cl n.q.r. frequencies and P-Cl bond lengths and on the electron supply to phosphorus.

RESULTS AND DISCUSSION

N.q.r. signals can be obtained from most of the compounds listed in Table 1 at or near ambient temperatures. The appearance of two signals in the ³⁵Cl n.q.r. spectrum of (CIPNBu^t)₂ is consistent with the slight deviation from mirror symmetry (cis arrangement of chlorine atoms) established by a crystallographic study.³ Both this compound and its oxidation product, [Cl(O)PN-Bu^t]₂,⁴ contain only one type of molecule in the crystallographic unit cell, but in the latter compound the chlorine atoms are related by a centre of symmetry and only one signal is obtained. The results indicate that there is little difference in the P-Cl bond properties in [Cl(O)PNBu^t]₂ and [Cl(O)PNMe]₂.

Many of the acyclic phosphorus-nitrogen compounds

² R. Keat, A. L. Porte, D. A. Tong, and R. A. Shaw, J.C.S. Dalton, 1972, 1648. ³ K. W. Muir, J.C.S. Dalton, 1975, 259. ⁴ Lj. Manojlović-Muir and K. W. Muir, J.C.S. Dalton, 1974,

2395

⁵ D. J. Osokin, I. A. Safin, and I. A. Nuretdinov, Org. Magnetic Resonance, 1972, 4, 831.

⁶ For a recent summary of references on this topic, see R. H. Neilson, R. C.-Y. Lee, and A. H. Cowley, J. Amer. Chem. Soc., 1975, 97, 5302.

reported here showed the same number of signals as chlorine atoms and it therefore follows that in these solids rotational averaging is not complete.⁵ Thus in Cl₂P·NBu^t·PCl₂, if the asymmetric unit contains only one molecule, the conformation adopted must be one which does not have a mirror plane of symmetry. It is well established that many molecules of this type have preferred conformations in which phosphorus and nitrogen lone pairs (the latter presumably in a nearly pure p orbital because of planarity at nitrogen) lie orthogonal to one another.⁶ This introduces a mirror plane of symmetry in the preferred conformations in the related compounds F_2P ·NMe·PF₂ (vapour phase) ⁷ and PCl₂(NMe₂) (liquid phase),⁸ although in the solid state at 77 K the latter compound shows two or more ³⁵Cl n.q.r. signals, depending on the phase.

Provided that the following compounds contain only one molecule in the asymmetric unit, then the chlorine atoms in a given $Cl_2P(X)$ group (X = lone pair, O, or S) are not equivalent in Cl₂P·NMe·P(O)Cl₂, Cl₂(X)P·NMe· $P(X)Cl_2$ (X = O or S), or $Cl_2(O)P \cdot NPh \cdot P(S)Cl_2$, but they

are apparently equivalent in Cl₂(O)P·NMe·P(S)Cl₂,⁹ possibly indicating a greater degree of symmetry. Of these molecules only the crystal structure of $Cl_{2}(O)P$. NPh·P(S)Cl₂ has been determined ¹⁰ and this shows that

⁷ E. Hedburg, L. Hedburg, and K. Hedburg, J. Amer. Chem. Soc., 1974, 96, 4417.

⁸ A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, J. Amer. Chem. Soc., 1970, 92, 5206.
⁹ T. S. Cameron, C. Y. Cheng, T. Demir, K. D. Howlett, R. Keat, A. L. Porte, C. K. Prout, and R. A. Shaw, Angew. Chem. Internat. Edn., 1972, 11, 510.
¹⁰ T. S. Cameron, K. M. Chouse, K. D. Howlett, B. Keat, M. Chouse, K. B. B. Keat, Keat, M. Chouse, K. B. Keat, M. Keat, M. Keat, M.

 ¹⁰ T. S. Cameron, K. M. Ghouse, K. D. Howlett, R. Keat, H. H. Mills, C. K. Prout, and J. M. Robertson, *Phosphorus*, 1972, 2, 47; T. S. Cameron, K. D. Howlett, and C. K. Prout, personal communication and unpublished results.

¹ J. C. Tebby, 'Physical Methods,' in Organophosphorus Chemistry, Specialist Periodical Reports, The Chemical Society, London, 1969-1976, vols. 1-7.

there is only one molecule in the asymmetric unit and that the conformation shown is devoid of symmetry elements. In Table 2, the mean frequencies associated with PCl_2 , $P(O)Cl_2$, and $P(S)Cl_2$ groups are listed for these acyclic compounds. The assignment of frequencies to these groups is based on a consideration of the frequencies of PCl_3 , PCl_3O , and PCl_3S (see Table 2). Lower ³⁵Cl than the $P(S)Cl_2$ group, and similar reasoning may be applied to the frequencies observed for the remaining compounds to conclude that the $P(O)Cl_2$ group is also more electron withdrawing than the PCl_2 group. The first conclusion is strongly supported by the crystal structure of the compound, $Cl_2(O)P\cdot NPh\cdot P(S)Cl_2$, where the P-N bond to the $P(O)Cl_2$ group is significantly

TABLE 1					
Chlorine-35 n.q.r. data					
Compound	Frequency ± 0.005 MHz	T/K	P–Cl Bond length " (Å)		
(ClPNBu ^t) ₂	19.659, 19.711	295	2.105 (9) ³		
Cl ₂ P·NBu··PCl ₂		293			
[Cl(O)PNMe] ₂	27.168 ^b	77			
	26.587	293			
$[Cl(O)PNBu^{\dagger}]_{2}$	26.345	298	$2.007(2)^4$		
FCI ₂ (NBu ^o H)O	20.343, 20.390 24 993 24 998	295			
$Cl_{2}(O)P \cdot CH_{2} \cdot P(O)Cl_{2}$	26.755, 26.771)	200	1.985(2)		
	26.997, 27.008J	293	1.986 (2)		
$Cl_2(O) P \cdot NMe \cdot PCl_2$	25.321, 25.392 (PCl ₂)				
	25.750, 25.833	77			
	$27.135, 27.201 [P(0)Cl_2]$				
	24.704, 25.164 (PCl ₂)	292			
	26.644, 27.229 $[P(O)Cl_2]$				
$Cl_2(O)P \cdot NMe \cdot P(O)Cl_2$	27.408, 27.674	77			
	27.847, 28.817)				
	27.305 28.210	290			
$Cl_2(O) P \cdot NMe \cdot P(S)Cl_2$	27.571 [P(O)Cl ₂]				
	29.310 ^d $[P(S)Cl_2]$	11			
	26.802 [P(O)Cl ₂]	290			
Cl. (S)P·NMe·P(S)Cl.	$28.020 \circ [P(S)Cl_2]$ J 28.400 28.785)				
C12(0)1 11110 1 (0)012	28.999. 29.377	77			
	28.259, 28.605	295			
$Cl_2(O)P \cdot NPh \cdot P(S)Cl_2$	27.617, 28.009 [P(O)Cl ₂]	77	$1.963(4), 1.974(3)^{10}$		
	28.793, 29.375 [P(S)Cl ₂]		1.998 (4), 1.994 (4)		
Me					
/ Me					
ĊH₂ ┣(0)Cl	23.977	293	2.069 (3) ^e		
< ∕─N Ma					
Me					
Cl ₂ (O)P·N:PPh ₃	25.088, 25.463	293	2.025 (1) ¹⁵		
PĈÌ ₃ Ó	28.938, 28.986 ^f	77	1.990 (10) g		
			1.972(10)		
			1.966 (5)		

^a Not corrected for librational motion. ^b See also W. H. Dalgleish and A. L. Porte, J. Magnetic Resonance, 1975, 20, 359. ^c W. S. Sheldrick, J.C.S. Dalton, 1975, 943. ^d Two incompletely resolved signals observed for each frequency (mean given). ^e T. S. Cameron, J.C.S. Perkin II, 1972, 591. ^f Data from R. M. Hart and M. A. Whitehead, J. Chem. Soc. (A), 1971, 1738. ^g K. Olie, Acta Cryst., 1971, B27, 1459.

n.q.r. frequencies of phosphoryl compounds reflect longer (see below) and presumably more polar P–Cl bonds, which in turn may be related to greater electron withdrawal from the bridging nitrogen atom. Comparison of the ³⁵Cl n.q.r. frequencies of Cl₂(O)P•NMe•P(O)Cl₂ and Cl₂(S)P•NMe•P(S)Cl₂ with those of Cl₂(O)P•NMe•P(S)Cl₂ shows that the signals arising from the P(O)Cl₂ group of the non-symmetric compound occur at lower frequencies, and those from the P(S)Cl₂ group occur at higher frequencies, than in the respective symmetric compounds. Thus the P(O)Cl₂ group is more electron withdrawing

¹¹ L. Vilkov and L. S. Khaikin, Topics Current Chem., 1975, 53, 25.

shorter than that to the $P(S)Cl_2$ group.¹⁰ Unfortunately, a comparison of the P–N bond lengths in related molecules $PCl_2(NMe_2)$ and $PCl_2(NMe_2)O$ is not possible because of the large errors that arise from their electron-diffraction study.¹¹ There is, however, evidence, from other crystallographic studies ^{10,12} that the P^{III–N} bond in general is longer than the P^{V–N} bond, for a given set of substituents on phosphorus.

We have also investigated the relation between P-Cl bond lengths of the >P(O)Cl moiety, and their ³⁵Cl n.q.r.

 ¹² A. W. Cordes, W. V. Doorne, G. W. Hunt, and R. W. Parry, *Inorg. Chem.*, 1971, **10**, 2591; J. W. Gilje and K. Seff, *ibid.*, 1972, **11**, 1643; G. W. Hunt and A. W. Cordes, *ibid.*, 1974, **13**, 1688. frequencies. The results for a somewhat limited set of data are shown in the Figure. The correlation between these two parameters is very close to being linear, in fact, surprisingly so when it is considered that the mean of a range of frequencies covering anything up to 0.8 MHz is used. The relation holds for cyclic as well as acyclic compounds.

The straight line of best fit for the phosphoryl compounds is y = -0.026 4x + 2.701 [y = bond length (Å), x = n.q.r. frequency (MHz)], which may be compared with y = -0.012 8x + 2.35 for cyclophosphazenes. The ³⁵Cl n.q.r. frequencies of phosphoryl compounds are less sensitive to changes in bond length than is the case in the chlorocyclophosphazenes (broken line in Figure).

The phosphoryl-group correlation does not apply to thiophosphoryl or to phosphorus(III) chlorides. For example, thiophosphoryl chlorides generally have higher

TABLE 2

Mean ^{35}Cl n.q.r. frequencies (MHz) observed at 293 \pm 3 K in acyclic compounds containing the P–N–P skeleton

	Group			
Compound	PCl2	P(O)Cl ₂	P(S)Cl ₂	
Cl,P·NBu ^t ·PCl,	24.885			
Cl _a (O)P·NMe·PCl _a	24.934	26.936		
$Cl_{2}(O) P \cdot NMe \cdot P(O) Cl_{2}$		27.267		
$Cl_2(O) P \cdot NMe \cdot P(S)Cl_2$		26.802	28.625	
$Cl_2(S)P \cdot NMe \cdot P(S)Cl_2$			28.432	
PCl ₃ ^{<i>a,c</i>}	26.155			
PCl ₃ O b,c		28.962		
PCl _a S ^{b,c}			29.822	

^a R. Livingston, J. Phys. Chem., 1953, 57, 496. ^b Table 1, footnote f. ^c At 77 K.

³⁵Cl n.q.r. frequencies and, where known, longer P–Cl bond lengths than analogous phosphoryl chlorides. This is exemplified by the crystal structure of $Cl_2(O)P\cdot NPh\cdot P(S)Cl_2$, where the frequency differences do not reflect differences in P–Cl bond lengths in chemically different functional groups.

The ³⁵Cl n.q.r. frequency found for the tervalent phosphorus compound (ClPNBu^t)₂ is far too low to fit the relation shown in the Figure for a P-Cl bond length of 2.105(9) Å.³ Whilst this is the only P¹¹¹-Cl bond length known for the solid state, the lengths of P-Cl bonds determined by electron diffraction for compounds in the series $PCl_{3-n}(NMe_2)_n$ (n = 0-2) ¹³ show a linear correlation with ³⁵Cl n.q.r. frequency which is yet again different from those above. In view of these findings it is not surprising that a plot of P-Cl bond length against ³⁵Cl n.q.r. frequency for a range of phosphorus-(III) and -(v) compounds produces a relatively wide scatter of points.¹⁴

Of the phosphoryl compounds, it may be noted that those with a $Cl_2(O)P\cdot NR\cdot P$ skeleton have n.q.r. frequencies intermediate between those of PCl_3O (*ca.* 29 MHz) and $PCl_2(NMe_2)O$ (*ca.* 26 MHz).⁵ (Measurements

¹⁴ V. E. Belskii, V. A. Naumov, and I. A. Nuretdinov, *Doklady Akad. Nauk* S.S.S.R., 1974, **215**, 355. on the latter two molecules were made at 77 K.) The intermediate frequencies are presumably a reflection of the two phosphorus atoms competing for the available bonding electrons on nitrogen. The position of $Cl_2(O)$ -PCH₂P(O)Cl₂ in the Figure indicates that the CH₂ and NMe groups have similar effects on the P-Cl bond character. The cyclodi- λ^5 -phosphazane [Cl(O)PNBu^t]₂ has a ³⁵Cl n.q.r. frequency considerably higher than found for the analogous acyclic compound PCl(NMe₂)₂O ⁵ (22.224 MHz at 77 K). In [Cl(O)PNBu^t]₂, the two

Plot of P-Cl bond length (not corrected for librational motions) against ³⁶Cl n.q.r. frequency for (a) $C_{17}H_{20}ClN_2OP$, (b) $Cl_2(O)P$ -N:PPh₃, (c) [Cl(O)PNBu[†]]₈, (d) $Cl_2(O)PCH_2P(O)Cl_9$, (e) PCl₃O, and (f) $Cl_2(O)P$ -NPh·P(S)Cl₂. Points are mean frequencies where more than one is observed, and the broken line shows the gradient of a similar plot for chlorocyclophosphazenes (ref. 2). The n.q.r. frequencies of (e) and (f) were measured at 77 K and 0.5 MHz has been subtracted from these values; the resulting uncertainty in frequency is shown

phosphorus atoms are each bound to two nitrogen atoms, but there are also conformational effects to be considered. It has recently been recognised ¹⁵ that the reactivity and structure of phosphorus-containing heterocycles is determined by conformational constraints and that these may render phosphorus in heterocycles electron deficient relative to analogous acyclic compounds. These effects may also be implicated in determining the relatively high frequency of the ³⁵Cl n.q.r. signal of the eight-membered heterocycle $C_{17}H_{20}$ -ClN₂OP (see Table 1), relative to PCl(NMe₂)₂O, and of the cyclodiphosphazane (ClPNBu^t)₂ relative to PCl-(NMe₂)₂ (18.508 MHz at 77 K).⁵

The two 35 Cl n.q.r. frequencies observed for Cl₂(O)P• N:PPh₃, which are to be expected from the non-equiv-

¹³ Summarised in N. M. Zaripov, V. A. Naumov, and L. L. Tuzova, *Phosphorus*. 1974, 4, 179.
¹⁴ V. E. Belskii, V. A. Naumov, and I. A. Nuretdinov, *Doklady*

¹⁵ R. F. Hudson and J. G. Verkade, Tetrahedron Letters, 1975 3231; R. D. Kroshefsky and J. G. Verkade, Inorg. Chem., 1975, 14, 3090; J. M. Lehn and G. Wipff, J.C.S. Chem. Comm., 1975, 800; R. A. Shaw, Pure Appl. Chem., 1975, 44, 317.

alence of the two chlorine atoms in the crystal structure,¹⁶ are marginally higher (mean ca. 0.3 MHz) than in PCl₂(NBu^tH)O. It is evident that the properties detected by n.q.r., which essentially relate to the ground state, do not reflect the ability of the N:PPh₃ group to confer relatively high basicities on cyclophosphazenes and related compounds¹⁷ relative to other primary and secondary amine residues. However, it may be noted that the =N-P bonds in Cl₂(O)P·N:PPh₃,¹⁶ Ph₂(O)P· N:PPh3,¹⁶ N₃P₃Cl₅·N:PPh3,¹⁸ and geminal N₃P₃PhCl₄· N:PPh₃¹⁹ are generally shorter by ca. 0.06 Å than the Me_oN-P bond in analogous dimethylamino-derivatives PCl₂(NMe₂)O,¹¹ PPh₂(NMe₂)O,²⁰ and N₃P₃Cl₃(NMe₂)₃.²¹

The difference in ³⁵Cl n.q.r. frequencies of PCl₂-(NBu^tH)O at 77 and 295 K(mean ca. 1.4 MHz) is greater than in all the other compounds reported here (generally ca. 0.7 MHz). This is the only case where hydrogen bonding could play a role in determining the conformation and barrier to rotation about the P-N bond. The difference in ³⁵Cl n.q.r. frequencies at 77 and 293 K is also greater in the primary amine derivative N₃P₃Cl₅.

¹⁶ A. F. Cameron, I. R. Cameron, and R. Keat, unpublished work.

¹⁷ S. N. Nabi, M. Biddlestone, and R. A. Shaw, J.C.S. Dalton,

1975, 2634. ¹⁸ Y. S. Babu, T. S. Cameron, S. S. Krishnamurthy, H. Manohar, and R. A. Shaw, Z. Naturforsch., 1976, **B31**, 999. ¹⁹ M. Biddlestone, G. J. Bullen, P. E. Dann, and R. A. Shaw,

J.C.S. Chem. Comm., 1974, 56.

²⁰ C. N. Caughlan and M. Ul-Haque, J.C.S. Perkin II, 1976. 1101.

²¹ F. R. Ahmed and E. J. Gabe, Acta Cryst., 1975, B31, 1028, and refs. therein.

22 W. H. Dalgleish, R. Keat, A. L. Porte, D. A. Tong, M. Ul-Hasan, and R. A. Shaw, J.C.S. Dalton, 1975, 309.

NPrⁱH than in the secondary amine derivatives of N₂P₂Cl_e, and it is known that the larger frequency increment is caused by a phase transformation in this case.^{22,23} Exceptionally large increments in n.q.r. frequencies recorded at liquid-nitrogen and room temperature may provide a ready way of spotting phase transitions in these solids.

EXPERIMENTAL

The compounds (CIPNBu^t)₂,²⁴ Cl₂P·NBu^t·PCl₂,²⁵ [Cl(O)P- $\mathrm{NMe}]_{2},^{26} \quad [\mathrm{Cl}(\mathrm{O})\mathrm{PNBu}^{\mathrm{t}}]_{2},^{27} \quad \mathrm{PCl}_{2}(\mathrm{NBu}^{\mathrm{t}}\mathrm{H})\mathrm{O},^{25} \quad \mathrm{Cl}_{2}(\mathrm{O})\mathrm{P}^{\bullet}\mathrm{CH}_{2}^{\bullet}$ $P(O)Cl_2, {}^{28}Cl_2(O)P\cdot NMe \cdot PCl_2, {}^{29}Cl_2(O)P\cdot NMe \cdot P(O)Cl_2, {}^{29}$ $\begin{array}{l} Cl_2(O) P \cdot NMe \cdot P(S) Cl_2, {}^{29} Cl_2(O) P \cdot NPh \cdot P(S) Cl_2, {}^{30} C_{17}H_{20}ClN_2 - OP, {}^{31} \text{ and } Cl_2(O) P \cdot N:PPh_3 {}^{32} \text{ were prepared by literature} \end{array}$ methods. Nuclear quadrupole resonance spectra were recorded on a Decca n.q.r. spectrometer as before.^{2, 22, 23}

We thank the S.R.C. for the award of a research studentship (to W. H. D.), and Drs. G. Bulloch and C. Y. Cheng for gifts of samples.

[6/2320 Received, 20th December, 1976]

- 23 W. H. Dalgleish, R. Keat, A. L. Porte, and R. A. Shaw,
- ²⁹ W. H. Dalgleish, R. Keat, A. L. Porte, and R. A. Shaw, J. Magnetic Resonance, 1975, 20, 351.
 ²⁴ R. Jefferson, J. F. Nixon, T. M. Painter, R. Keat, and L. Stobbs, J.C.S. Dalton, 1973, 1414.
 ²⁵ G. Bulloch and R. Keat, J.C.S. Dalton, 1974, 2010.
 ²⁶ V. P. Kukhar', Zhur. obshchei Khim., 1970, 40, 785.
 ²⁷ R. Keat, Lj. Manojlović-Muir, and K. W. Muir, Angew. Chem. Internat. Edn., 1973, 13, 211.
 ²⁸ G. Bulloch and R. Keat, J.C.S. Dalton, 1976, 1113.
 ²⁹ R. Keat, L. Chem. Soc. (A) 1970, 2732.
- ²⁹ R. Keat, J. Chem. Soc. (A), 1970, 2732.
 ³⁰ R. Keat, J.C.S. Dalton, 1972, 2189.
- ³¹ C. Y. Cheng, R. A. Shaw, T. S. Cameron, and C. K. Prout, Chem. Comm., 1968, 616.
- ³² R. Appel and G. Buchner, Z. anorg. Chem., 1963, 320, 3.